# **MIM-Tool Steels**

Metal Injection Molding Powders

NEWAY PRECISION WORKS

## NewayPrecision www.newayprecision.com

## **Technical Data:**

#### **Product Description**

Metal injection molded tool steels like A2, M2, M4, D2, S7, H13, and T15 offer an unparalleled combination of hardness, wear resistance, impact strength, and dimensional precision. MIM technology uses fine tool steel powders to injection mold intricate components with superior properties to machining or casting. From cold work punches to hot extrusion dies, tool steel MIM empowers engineering durable, high-performance parts tailored for demanding applications across diverse industries.

#### Features and Applications

| i outuroo una rappiroutiono |                                                  |                                               |
|-----------------------------|--------------------------------------------------|-----------------------------------------------|
| Grade                       | Features                                         | Applications                                  |
| MIM-A2                      | High wear resistance and toughness               | Automotive components, machinery parts        |
| MIM-M2                      | Excellent heat resistance and wear properties    | Tools, gears, industrial machinery components |
| MIM-M4                      | High abrasion resistance and impact strength     | Aerospace components, heavy machinery parts   |
| MIM-D2                      | Exceptional wear resistance and hardness         | Medical instruments, consumer electronics     |
| MIM-S7                      | High-impact strength and machinability           | Electronics, jewelry                          |
| MIM-H13                     | Excellent thermal conductivity and hot hardness  | Bearings, precision instruments, automotive   |
| MIM-T15                     | Exceptional wear resistance at high temperatures | Gears, shafts, structural components          |

#### **Chemical Composition**

| Element | Carbon (C) | Manganese<br>(Mn) | Silicon (Si) | Chromium<br>(Cr) | Molybdenu<br>m (Mo) | Vanadium<br>(V) | Other<br>Elements     |
|---------|------------|-------------------|--------------|------------------|---------------------|-----------------|-----------------------|
| MIM-A2  | 1.00%      | 0.80%             | 0.30%        | 5.00%            | 0.90%               | 0.20%           | -                     |
| MIM-M2  | 0.85%      | 0.30%             | 0.30%        | 4.20%            | 5.00%               | 6.40%           | -                     |
| MIM-M4  | 1.30%      | 0.20%             | 0.25%        | 4.00%            | 4.75%               | 5.25%           | -                     |
| MIM-D2  | 1.55%      | 0.40%             | 0.40%        | 11.50%           | 0.85%               | 0.20%           | -                     |
| MIM-S7  | 0.50%      | 0.70%             | 1.00%        | 3.25%            | 1.40%               | -               | -                     |
| MIM-H13 | 0.40%      | 0.40%             | 1.00%        | 5.00%            | 1.30%               | 0.95%           | -                     |
| MIM-T15 | 1.30%      | 0.20%             | 0.20%        | 4.00%            | 9.00%               | 4.00%           | Cobalt (Co):<br>5.00% |

### **Physical and Mechanical**

| Alloys  | Status | Tensile<br>Strength | Yield<br>Strength | Impact<br>Strength | Hardness | Young's<br>Modulus | Poisson's<br>Ratio | Elongation                     | Density |
|---------|--------|---------------------|-------------------|--------------------|----------|--------------------|--------------------|--------------------------------|---------|
|         |        | Мра                 | Мра               | J                  | HRB      | Gpa                | Ratio              | % in 25.4 mm g/cm <sup>3</sup> |         |
| MIM-A2  | HT     | 860                 | 660               | 18                 | 60       | 210                | 0.29               | 10                             | 7.86    |
| MIM-M2  | HT     | 1100                | 950               | 20                 | 65       | 200                | 0.28               | 8                              | 8.19    |
| MIM-M4  | HT     | 1000                | 850               | 23                 | 64       | 200                | 0.28               | 10                             | 8.23    |
| MIM-D2  | HT     | 900                 | 800               | 12                 | 61       | 195                | 0.29               | 7                              | 7.83    |
| MIM-S7  | HT     | 900                 | 600               | 15                 | 45       | 195                | 0.29               | 14                             | 7.83    |
| MIM-H13 | HT     | 1800                | 1600              | 30                 | 48       | 205                | 0.29               | 8                              | 7.81    |
| MIM-T15 | HT     | 1800                | 1600              | 20                 | 66       | 235                | 0.28               | 3                              | 8.72    |
|         |        |                     |                   |                    |          |                    |                    |                                |         |

#### Note

The above data are reference material science data. This data reference is not binding and is not considered as authoritative test data. If your material requirements are extremely precise, please contact our material engineers.Tel | +86 18926788217 | Web | <u>www.newayprecision.com</u> | Contact Neway

